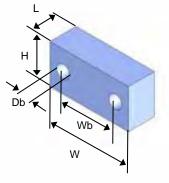


Custom Stamps and Dies

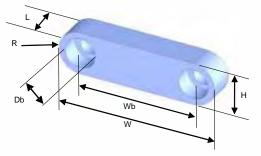

w Inverted Wedge Type L = length over character H = heightL W = width topA = angle bottom A

Shank Style Rectangular Die L = length of die overcharacter W = width of die H = height of die D_s = Diameter of shank L_s = length of shank $(L \times W \times H)$ Shank: (D_{s x} L_s)

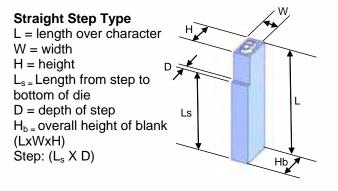

Straight Type

W = width

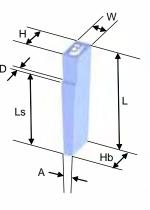
H = height



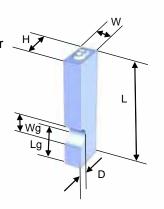
Flat Style Rectangular Die L = length over character W = widthH = heightWb = distance between center of mounting holes Db = diameter of bore


Retainer

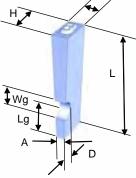
L = length over character W = widthWb = distance between center of mounting holes $D_{\rm b}$ = diameter of bore R = radius H = height



Custom Stamps and Dies

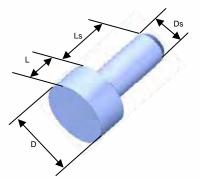

Knurl Step Type

L = length over character W = width H = height L_s = length from step to bottom of die D = depth of step H_b = overall width of blank (LxWxH) A = angle Step = (L_s x D angle: A)



Straight Groove Type

L = length over character W = width H = height L_{g} length from the middle of groove to bottom of die D = depth of groove W_{g} width of groove (LxWxH) Groove: $(L_{gx}Wg \times D)$



Knurl Groove Type L = length over character W = width H = height L_{g =} length from the middle of groove to bottom of die D = depth of groove W_g = width of groove (LxWxH) Groove: (L_{g x} W_g x D angle: A)

W

Shank Style Round Die L = length of body over character D = diameter of body L_s = length of shank D_s = diameter of shank (D x L) Shank: $(D_{s x} L_s)$

